Added existing articles

This commit is contained in:
Nevernown
2025-04-06 18:20:41 +02:00
parent f1bc884516
commit 382808ab2e
13 changed files with 487 additions and 10 deletions

View File

@@ -1,7 +1,23 @@
* {
margin: 0;
padding: 0;
}
h1 {
font-size: 24pt;
margin-bottom: 8pt;
}
h2 {
font-size: 18pt;
margin-bottom: 8pt;
}
h3 {
font-size: 16pt;
margin-bottom: 8pt;
}
p {
margin-bottom: 12pt;
}
body {
@@ -19,7 +35,7 @@ nav {
height: 100vh;
}
nav a {
padding: 0pt 4pt 2pt 4pt;
padding: 0pt 4pt 2pt 18pt;
display: inline-block;
font-size: large;
color: whitesmoke;
@@ -32,4 +48,5 @@ nav a:hover {
article {
padding-top: 12pt;
padding-left: 12pt;
width: 100%;
}

View File

@@ -2,17 +2,23 @@
import '../css/math.css';
const { frontmatter } = Astro.props;
---
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.16.21/dist/katex.min.css" integrity="sha384-zh0CIslj+VczCZtlzBcjt5ppRcsAmDnRem7ESsYwWwg3m/OaJ2l4x7YBZl9Kxxib" crossorigin="anonymous">
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.21/dist/katex.min.js" integrity="sha384-Rma6DA2IPUwhNxmrB/7S3Tno0YY7sFu9WSYMCuulLhIqYSGZ2gKCJWIqhBWqMQfh" crossorigin="anonymous"></script>
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.21/dist/contrib/auto-render.min.js" integrity="sha384-hCXGrW6PitJEwbkoStFjeJxv+fSOOQKOPbJxSfM6G5sWZjAyWhXiTIIAmQqnlLlh" crossorigin="anonymous"
onload="renderMathInElement(document.body);"></script>
<title>{frontmatter.title}</title>
</head>
<body>
<nav>
<a href="/">Home</a>
<a href="#">Breuken</a>
<a href="#">Machten</a>
<a href="/breuken">Breuken</a>
<a href="/wortels">Wortels</a>
<a href="/machten">Machten</a>
</nav>
<article>
<slot /> <!-- your content is injected here -->

41
src/pages/breuken.md Normal file
View File

@@ -0,0 +1,41 @@
---
layout: "../layout/math.astro"
title: "Breuken"
---
# Breuken
## Vermenigvuldigen
$$
\Large
\frac{\textcolor{blue}{a}}{\textcolor{red}{b}}
\cdot
\frac{\textcolor{green}{c}}{\textcolor{orange}{d}}
=
\frac{\textcolor{blue}{a}\cdot \textcolor{green}{c}}{\textcolor{red}{b}\cdot \textcolor{orange}{d}}
$$
## Optellen
$$
\Large
\frac{\textcolor{blue}{a}}{\textcolor{red}{b}}+\frac{\textcolor{green}{c}}{\textcolor{orange}{d}}
=
\frac{(\textcolor{blue}{a}\cdot \textcolor{orange}{d})+(\textcolor{green}{c}\cdot \textcolor{red}{b})}{\textcolor{red}{b}\cdot \textcolor{orange}{d}}
$$
$$
\Large
x\frac{\textcolor{blue}{a}}{\textcolor{red}{b}}+y\frac{\textcolor{green}{c}}{\textcolor{orange}{d}}
=
x+y+\frac{\textcolor{blue}{a}}{\textcolor{red}{b}}+\frac{\textcolor{green}{c}}{\textcolor{orange}{d}}
$$
## Delen
$$
\Large
\frac{\textcolor{blue}{a}}{(\frac{\textcolor{red}{b}}{\textcolor{green}{c}})}
=
\textcolor{blue}{a}\cdot\frac{\textcolor{green}{c}}{\textcolor{red}{b}}
$$
$$
\Large
\frac{(\frac{\textcolor{blue}{a}}{\textcolor{red}{b}})}{\textcolor{green}{c}}
=
\frac{\textcolor{blue}{a}}{\textcolor{red}{b}\cdot \textcolor{green}{c}}
$$

View File

@@ -2,4 +2,22 @@
layout: "../layout/math.astro"
title: "Home"
---
# Wiskunde
# Wiskunde
Links vind je uitleg van basisconcepten die je nodig hebt binnen de wiskunde. Gebruik dit tijdens het leren om je basisvaardigheden na te lopen.
Hieronder vind je nog een aantal korte opmeringen die niet onder de onderwerpen in het linker-menu vallen.
## Haakjes
Haakjes gaan altijd voor met uitwerken, maar soms moet je de inhoud loswerken:
$$
\Large
\textcolor{blue}{a}(\textcolor{red}{b}+\textcolor{green}{c})
= \textcolor{blue}{a}\cdot\textcolor{red}{b}+\textcolor{blue}{a}\cdot\textcolor{green}{c}
$$
$$
\Large
(\textcolor{blue}{a}+\textcolor{orange}{d})(\textcolor{red}{b}+\textcolor{green}{c})
=
\textcolor{blue}{a}\cdot\textcolor{red}{b}+\textcolor{blue}{a}\cdot\textcolor{green}{c}+\textcolor{orange}{d}\cdot\textcolor{red}{b}+\textcolor{orange}{d}\cdot\textcolor{green}{c}
$$

69
src/pages/machten.md Normal file
View File

@@ -0,0 +1,69 @@
---
layout: "../layout/math.astro"
title: "Machten"
---
# Machten
## Basisregels
$$
\Large
(x^{\textcolor{blue}{a}})^{\textcolor{red}{b}}
=
x^{\textcolor{blue}{a}\cdot\textcolor{red}{b}}
$$
$$
\Large
x^{\textcolor{blue}{a}}\cdot x^{\textcolor{red}{b}}
=
x^{\textcolor{blue}{a}+\textcolor{red}{b}}
$$
$$
\Large
\frac{x^{\textcolor{blue}{a}}}{x^{\textcolor{red}{b}}}
=
x^{\textcolor{blue}{a}-\textcolor{red}{b}}
$$
## Machten en vermenigvuldigen
$$
\Large
\textcolor{blue}{a}^x\cdot\textcolor{red}{b}
=
\textcolor{red}{b}\cdot\textcolor{blue}{a}^x
$$
$$
\Large
\textcolor{blue}{a}\cdot\textcolor{red}{b}^x\cdot\textcolor{green}{c}
=
(\textcolor{blue}{a}\cdot \textcolor{green}{c})\cdot\textcolor{red}{b}^{x}
$$
$$
\Large
\textcolor{blue}{a}\cdot\textcolor{red}{b}^x\cdot\textcolor{red}{b}
=
\textcolor{blue}{a}\cdot\textcolor{red}{b}^{x+1}
$$
## Complexe regels voor machten
$$
\Large
\textcolor{blue}{a}x^{\textcolor{green}{n}}\cdot\textcolor{red}{b}x^{\textcolor{orange}{m}}
=
(\textcolor{blue}{a}\cdot \textcolor{red}{b})x^{\textcolor{green}{n}+\textcolor{orange}{m}}
$$
$$
\Large
\textcolor{green}{n} \neq \textcolor{orange}{m} \Rightarrow \textcolor{blue}{a}x^{\textcolor{green}{n}}+\textcolor{red}{b}x^{\textcolor{orange}{m}}
=
\textcolor{blue}{a}x^{\textcolor{green}{n}}+\textcolor{red}{b}x^{\textcolor{orange}{m}}
$$
$$
\Large
\textcolor{blue}{a}x^{\textcolor{green}{n}}+\textcolor{red}{b}x^{\textcolor{green}{n}}
=
(\textcolor{blue}{a}+\textcolor{red}{b})x^{\textcolor{green}{n}}
$$

41
src/pages/wortels.md Normal file
View File

@@ -0,0 +1,41 @@
---
layout: "../layout/math.astro"
title: "Wortels"
---
# Wortels
## Vermenigvuldiging
$$
\Large
\sqrt{\textcolor{blue}{a}\cdot\textcolor{red}{b}}
=
\sqrt{\textcolor{blue}{a}}\cdot\sqrt{\textcolor{red}{b}}
$$
## Vermenigvuldigen met breuken
$$
\Large
\sqrt{\frac{\textcolor{blue}{a}}{\textcolor{red}{b}}}
=
\sqrt{\textcolor{blue}{a}\cdot\frac{1}{\textcolor{red}{b}}}
=
\sqrt{\textcolor{blue}{a}}\cdot\sqrt{\frac{1}{\textcolor{red}{b}}}
$$
## Herschrijven als Macht
$$
\Large
\sqrt(x) = x^{1/2}
$$
$$
\Large
\sqrt[3](x^2)=x^{2/3}
$$
$$
\Large
\sqrt[\textcolor{blue}{n}](x^{\textcolor{red}{m}})
=
x^{\textcolor{red}{m}/\textcolor{blue}{n}}
$$