Added existing articles
This commit is contained in:
parent
f1bc884516
commit
382808ab2e
@ -1 +1 @@
|
|||||||
[["Map",1,2],"meta::meta",["Map",3,4,5,6],"astro-version","5.5.6","astro-config-digest","{\"root\":{},\"srcDir\":{},\"publicDir\":{},\"outDir\":{},\"cacheDir\":{},\"site\":\"https://math.technotive.nl\",\"compressHTML\":false,\"base\":\"/\",\"trailingSlash\":\"ignore\",\"output\":\"static\",\"scopedStyleStrategy\":\"attribute\",\"build\":{\"format\":\"directory\",\"client\":{},\"server\":{},\"assets\":\"_astro\",\"serverEntry\":\"entry.mjs\",\"redirects\":true,\"inlineStylesheets\":\"auto\",\"concurrency\":1},\"server\":{\"open\":false,\"host\":false,\"port\":4321,\"streaming\":true,\"allowedHosts\":[]},\"redirects\":{},\"image\":{\"endpoint\":{\"route\":\"/_image\"},\"service\":{\"entrypoint\":\"astro/assets/services/sharp\",\"config\":{}},\"domains\":[],\"remotePatterns\":[]},\"devToolbar\":{\"enabled\":true},\"markdown\":{\"syntaxHighlight\":{\"type\":\"shiki\",\"excludeLangs\":[\"math\"]},\"shikiConfig\":{\"langs\":[],\"langAlias\":{},\"theme\":\"github-dark\",\"themes\":{},\"wrap\":false,\"transformers\":[]},\"remarkPlugins\":[],\"rehypePlugins\":[],\"remarkRehype\":{},\"gfm\":true,\"smartypants\":true},\"security\":{\"checkOrigin\":true},\"env\":{\"schema\":{},\"validateSecrets\":false},\"experimental\":{\"clientPrerender\":false,\"contentIntellisense\":false,\"responsiveImages\":false,\"serializeConfig\":false,\"headingIdCompat\":false,\"preserveScriptOrder\":false},\"legacy\":{\"collections\":false}}"]
|
[["Map",1,2],"meta::meta",["Map",3,4,5,6],"astro-version","5.5.6","astro-config-digest","{\"root\":{},\"srcDir\":{},\"publicDir\":{},\"outDir\":{},\"cacheDir\":{},\"site\":\"https://math.technotive.nl\",\"compressHTML\":false,\"base\":\"/\",\"trailingSlash\":\"ignore\",\"output\":\"static\",\"scopedStyleStrategy\":\"attribute\",\"build\":{\"format\":\"directory\",\"client\":{},\"server\":{},\"assets\":\"_astro\",\"serverEntry\":\"entry.mjs\",\"redirects\":true,\"inlineStylesheets\":\"auto\",\"concurrency\":1},\"server\":{\"open\":false,\"host\":false,\"port\":4321,\"streaming\":true,\"allowedHosts\":[]},\"redirects\":{},\"image\":{\"endpoint\":{\"route\":\"/_image\"},\"service\":{\"entrypoint\":\"astro/assets/services/sharp\",\"config\":{}},\"domains\":[],\"remotePatterns\":[]},\"devToolbar\":{\"enabled\":true},\"markdown\":{\"syntaxHighlight\":{\"type\":\"shiki\",\"excludeLangs\":[\"math\"]},\"shikiConfig\":{\"langs\":[],\"langAlias\":{},\"theme\":\"github-dark\",\"themes\":{\"light\":\"min-light\",\"dark\":\"night-owl\"},\"wrap\":true,\"transformers\":[]},\"remarkPlugins\":[null],\"rehypePlugins\":[null],\"remarkRehype\":{},\"gfm\":true,\"smartypants\":true},\"security\":{\"checkOrigin\":true},\"env\":{\"schema\":{},\"validateSecrets\":false},\"experimental\":{\"clientPrerender\":false,\"contentIntellisense\":false,\"responsiveImages\":false,\"serializeConfig\":false,\"headingIdCompat\":false,\"preserveScriptOrder\":false},\"legacy\":{\"collections\":false}}"]
|
||||||
@ -1,6 +1,18 @@
|
|||||||
import { defineConfig } from 'astro/config'
|
import { defineConfig } from 'astro/config'
|
||||||
|
|
||||||
|
import remarkMath from "remark-math";
|
||||||
|
import rehypeKatex from "rehype-katex";
|
||||||
|
|
||||||
export default defineConfig({
|
export default defineConfig({
|
||||||
|
markdown: {
|
||||||
|
remarkPlugins: [remarkMath],
|
||||||
|
rehypePlugins: [rehypeKatex], // <- new plugin
|
||||||
|
shikiConfig: {
|
||||||
|
// For more themes, visit https://shiki.style/themes
|
||||||
|
themes: { light: "min-light", dark: "night-owl" },
|
||||||
|
wrap: true,
|
||||||
|
},
|
||||||
|
},
|
||||||
site: "https://math.technotive.nl",
|
site: "https://math.technotive.nl",
|
||||||
trailingSlash: 'ignore',
|
trailingSlash: 'ignore',
|
||||||
compressHTML: false
|
compressHTML: false
|
||||||
|
|||||||
47
dist/breuken/index.html
vendored
Normal file
47
dist/breuken/index.html
vendored
Normal file
File diff suppressed because one or more lines are too long
23
dist/index.html
vendored
23
dist/index.html
vendored
@ -3,16 +3,31 @@
|
|||||||
<head>
|
<head>
|
||||||
<meta charset="utf-8">
|
<meta charset="utf-8">
|
||||||
<meta name="viewport" content="width=device-width, initial-scale=1">
|
<meta name="viewport" content="width=device-width, initial-scale=1">
|
||||||
|
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.16.21/dist/katex.min.css" integrity="sha384-zh0CIslj+VczCZtlzBcjt5ppRcsAmDnRem7ESsYwWwg3m/OaJ2l4x7YBZl9Kxxib" crossorigin="anonymous">
|
||||||
|
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.21/dist/katex.min.js" integrity="sha384-Rma6DA2IPUwhNxmrB/7S3Tno0YY7sFu9WSYMCuulLhIqYSGZ2gKCJWIqhBWqMQfh" crossorigin="anonymous"></script>
|
||||||
|
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.21/dist/contrib/auto-render.min.js" integrity="sha384-hCXGrW6PitJEwbkoStFjeJxv+fSOOQKOPbJxSfM6G5sWZjAyWhXiTIIAmQqnlLlh" crossorigin="anonymous" onload="renderMathInElement(document.body);"></script>
|
||||||
<title>Home</title>
|
<title>Home</title>
|
||||||
<style>*{margin:0;padding:0}body{display:flex;flex-direction:row;font-family:Courier New,Courier,monospace}nav{padding-top:12pt;display:flex;flex-direction:column;background-color:#4682b4;min-width:120pt;height:100vh}nav a{padding:0 4pt 2pt;display:inline-block;font-size:large;color:#f5f5f5}nav a:hover{background-image:linear-gradient(to bottom,#4682b4,#191970)}article{padding-top:12pt;padding-left:12pt}
|
<style>*{margin:0;padding:0}h1{font-size:24pt;margin-bottom:8pt}h2{font-size:18pt;margin-bottom:8pt}h3{font-size:16pt;margin-bottom:8pt}p{margin-bottom:12pt}body{display:flex;flex-direction:row;font-family:Courier New,Courier,monospace}nav{padding-top:12pt;display:flex;flex-direction:column;background-color:#4682b4;min-width:120pt;height:100vh}nav a{padding:0 4pt 2pt 18pt;display:inline-block;font-size:large;color:#f5f5f5}nav a:hover{background-image:linear-gradient(to bottom,#4682b4,#191970)}article{padding-top:12pt;padding-left:12pt;width:100%}
|
||||||
</style></head>
|
</style></head>
|
||||||
<body>
|
<body>
|
||||||
<nav>
|
<nav>
|
||||||
<a href="/">Home</a>
|
<a href="/">Home</a>
|
||||||
<a href="#">Breuken</a>
|
<a href="/breuken">Breuken</a>
|
||||||
<a href="#">Machten</a>
|
<a href="/wortels">Wortels</a>
|
||||||
|
<a href="/machten">Machten</a>
|
||||||
</nav>
|
</nav>
|
||||||
<article>
|
<article>
|
||||||
<h1 id="wiskunde">Wiskunde</h1> <!-- your content is injected here -->
|
<h1 id="wiskunde">Wiskunde</h1>
|
||||||
|
<p>Links vind je uitleg van basisconcepten die je nodig hebt binnen de wiskunde. Gebruik dit tijdens het leren om je basisvaardigheden na te lopen.</p>
|
||||||
|
<p>Hieronder vind je nog een aantal korte opmeringen die niet onder de onderwerpen in het linker-menu vallen.</p>
|
||||||
|
<h2 id="haakjes">Haakjes</h2>
|
||||||
|
<p>Haakjes gaan altijd voor met uitwerken, maar soms moet je de inhoud loswerken:</p>
|
||||||
|
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle mathsize="1.44em"><mstyle mathcolor="blue"><mi>a</mi></mstyle><mo stretchy="false">(</mo><mstyle mathcolor="red"><mi>b</mi></mstyle><mo>+</mo><mstyle mathcolor="green"><mi>c</mi></mstyle><mo stretchy="false">)</mo><mo>=</mo><mstyle mathcolor="blue"><mi>a</mi></mstyle><mo>⋅</mo><mstyle mathcolor="red"><mi>b</mi></mstyle><mo>+</mo><mstyle mathcolor="blue"><mi>a</mi></mstyle><mo>⋅</mo><mstyle mathcolor="green"><mi>c</mi></mstyle></mstyle></mrow><annotation encoding="application/x-tex">\Large
|
||||||
|
\textcolor{blue}{a}(\textcolor{red}{b}+\textcolor{green}{c})
|
||||||
|
= \textcolor{blue}{a}\cdot\textcolor{red}{b}+\textcolor{blue}{a}\cdot\textcolor{green}{c}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.44em;vertical-align:-0.36em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:blue;">a</span><span class="mopen sizing reset-size6 size8">(</span><span class="mord mathnormal sizing reset-size6 size8" style="color:red;">b</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.44em;vertical-align:-0.36em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:green;">c</span><span class="mclose sizing reset-size6 size8">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel sizing reset-size6 size8">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.64em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:blue;">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.12em;vertical-align:-0.12em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:red;">b</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.64em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:blue;">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.62em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:green;">c</span></span></span></span></span>
|
||||||
|
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle mathsize="1.44em"><mo stretchy="false">(</mo><mstyle mathcolor="blue"><mi>a</mi></mstyle><mo>+</mo><mstyle mathcolor="orange"><mi>d</mi></mstyle><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mstyle mathcolor="red"><mi>b</mi></mstyle><mo>+</mo><mstyle mathcolor="green"><mi>c</mi></mstyle><mo stretchy="false">)</mo><mo>=</mo><mstyle mathcolor="blue"><mi>a</mi></mstyle><mo>⋅</mo><mstyle mathcolor="red"><mi>b</mi></mstyle><mo>+</mo><mstyle mathcolor="blue"><mi>a</mi></mstyle><mo>⋅</mo><mstyle mathcolor="green"><mi>c</mi></mstyle><mo>+</mo><mstyle mathcolor="orange"><mi>d</mi></mstyle><mo>⋅</mo><mstyle mathcolor="red"><mi>b</mi></mstyle><mo>+</mo><mstyle mathcolor="orange"><mi>d</mi></mstyle><mo>⋅</mo><mstyle mathcolor="green"><mi>c</mi></mstyle></mstyle></mrow><annotation encoding="application/x-tex">\Large
|
||||||
|
(\textcolor{blue}{a}+\textcolor{orange}{d})(\textcolor{red}{b}+\textcolor{green}{c})
|
||||||
|
=
|
||||||
|
\textcolor{blue}{a}\cdot\textcolor{red}{b}+\textcolor{blue}{a}\cdot\textcolor{green}{c}+\textcolor{orange}{d}\cdot\textcolor{red}{b}+\textcolor{orange}{d}\cdot\textcolor{green}{c}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.44em;vertical-align:-0.36em;"></span><span class="mopen sizing reset-size6 size8">(</span><span class="mord mathnormal sizing reset-size6 size8" style="color:blue;">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.44em;vertical-align:-0.36em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:orange;">d</span><span class="mclose sizing reset-size6 size8">)</span><span class="mopen sizing reset-size6 size8">(</span><span class="mord mathnormal sizing reset-size6 size8" style="color:red;">b</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.44em;vertical-align:-0.36em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:green;">c</span><span class="mclose sizing reset-size6 size8">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel sizing reset-size6 size8">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.64em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:blue;">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.12em;vertical-align:-0.12em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:red;">b</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.64em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:blue;">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.96em;vertical-align:-0.12em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:green;">c</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:orange;">d</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.12em;vertical-align:-0.12em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:red;">b</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:orange;">d</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.62em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:green;">c</span></span></span></span></span> <!-- your content is injected here -->
|
||||||
</article>
|
</article>
|
||||||
</body></html>
|
</body></html>
|
||||||
61
dist/machten/index.html
vendored
Normal file
61
dist/machten/index.html
vendored
Normal file
@ -0,0 +1,61 @@
|
|||||||
|
<!DOCTYPE html>
|
||||||
|
<html lang="en">
|
||||||
|
<head>
|
||||||
|
<meta charset="utf-8">
|
||||||
|
<meta name="viewport" content="width=device-width, initial-scale=1">
|
||||||
|
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.16.21/dist/katex.min.css" integrity="sha384-zh0CIslj+VczCZtlzBcjt5ppRcsAmDnRem7ESsYwWwg3m/OaJ2l4x7YBZl9Kxxib" crossorigin="anonymous">
|
||||||
|
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.21/dist/katex.min.js" integrity="sha384-Rma6DA2IPUwhNxmrB/7S3Tno0YY7sFu9WSYMCuulLhIqYSGZ2gKCJWIqhBWqMQfh" crossorigin="anonymous"></script>
|
||||||
|
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.21/dist/contrib/auto-render.min.js" integrity="sha384-hCXGrW6PitJEwbkoStFjeJxv+fSOOQKOPbJxSfM6G5sWZjAyWhXiTIIAmQqnlLlh" crossorigin="anonymous" onload="renderMathInElement(document.body);"></script>
|
||||||
|
<title>Machten</title>
|
||||||
|
<style>*{margin:0;padding:0}h1{font-size:24pt;margin-bottom:8pt}h2{font-size:18pt;margin-bottom:8pt}h3{font-size:16pt;margin-bottom:8pt}p{margin-bottom:12pt}body{display:flex;flex-direction:row;font-family:Courier New,Courier,monospace}nav{padding-top:12pt;display:flex;flex-direction:column;background-color:#4682b4;min-width:120pt;height:100vh}nav a{padding:0 4pt 2pt 18pt;display:inline-block;font-size:large;color:#f5f5f5}nav a:hover{background-image:linear-gradient(to bottom,#4682b4,#191970)}article{padding-top:12pt;padding-left:12pt;width:100%}
|
||||||
|
</style></head>
|
||||||
|
<body>
|
||||||
|
<nav>
|
||||||
|
<a href="/">Home</a>
|
||||||
|
<a href="/breuken">Breuken</a>
|
||||||
|
<a href="/wortels">Wortels</a>
|
||||||
|
<a href="/machten">Machten</a>
|
||||||
|
</nav>
|
||||||
|
<article>
|
||||||
|
<h1 id="machten">Machten</h1>
|
||||||
|
<h2 id="basisregels">Basisregels</h2>
|
||||||
|
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle mathsize="1.44em"><mo stretchy="false">(</mo><msup><mi>x</mi><mstyle mathcolor="blue"><mi>a</mi></mstyle></msup><msup><mo stretchy="false">)</mo><mstyle mathcolor="red"><mi>b</mi></mstyle></msup><mo>=</mo><msup><mi>x</mi><mrow><mstyle mathcolor="blue"><mi>a</mi></mstyle><mo>⋅</mo><mstyle mathcolor="red"><mi>b</mi></mstyle></mrow></msup></mstyle></mrow><annotation encoding="application/x-tex">\Large
|
||||||
|
(x^{\textcolor{blue}{a}})^{\textcolor{red}{b}}
|
||||||
|
=
|
||||||
|
x^{\textcolor{blue}{a}\cdot\textcolor{red}{b}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.6492em;vertical-align:-0.36em;"></span><span class="mopen sizing reset-size6 size8">(</span><span class="mord sizing reset-size6 size8"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.712em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="color:blue;">a</span></span></span></span></span></span></span></span></span><span class="mclose sizing reset-size6 size8"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8952em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="color:red;">b</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel sizing reset-size6 size8">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.2892em;"></span><span class="mord sizing reset-size6 size8"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8952em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="color:blue;">a</span><span class="mbin mtight">⋅</span><span class="mord mathnormal mtight" style="color:red;">b</span></span></span></span></span></span></span></span></span></span></span></span></span>
|
||||||
|
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle mathsize="1.44em"><msup><mi>x</mi><mstyle mathcolor="blue"><mi>a</mi></mstyle></msup><mo>⋅</mo><msup><mi>x</mi><mstyle mathcolor="red"><mi>b</mi></mstyle></msup><mo>=</mo><msup><mi>x</mi><mrow><mstyle mathcolor="blue"><mi>a</mi></mstyle><mo>+</mo><mstyle mathcolor="red"><mi>b</mi></mstyle></mrow></msup></mstyle></mrow><annotation encoding="application/x-tex">\Large
|
||||||
|
x^{\textcolor{blue}{a}}\cdot x^{\textcolor{red}{b}}
|
||||||
|
=
|
||||||
|
x^{\textcolor{blue}{a}+\textcolor{red}{b}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0253em;"></span><span class="mord sizing reset-size6 size8"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.712em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="color:blue;">a</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.2892em;"></span><span class="mord sizing reset-size6 size8"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8952em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="color:red;">b</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel sizing reset-size6 size8">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.2892em;"></span><span class="mord sizing reset-size6 size8"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8952em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="color:blue;">a</span><span class="mbin mtight">+</span><span class="mord mathnormal mtight" style="color:red;">b</span></span></span></span></span></span></span></span></span></span></span></span></span>
|
||||||
|
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle mathsize="1.44em"><mfrac><msup><mi>x</mi><mstyle mathcolor="blue"><mi>a</mi></mstyle></msup><msup><mi>x</mi><mstyle mathcolor="red"><mi>b</mi></mstyle></msup></mfrac><mo>=</mo><msup><mi>x</mi><mrow><mstyle mathcolor="blue"><mi>a</mi></mstyle><mo>−</mo><mstyle mathcolor="red"><mi>b</mi></mstyle></mrow></msup></mstyle></mrow><annotation encoding="application/x-tex">\Large
|
||||||
|
\frac{x^{\textcolor{blue}{a}}}{x^{\textcolor{red}{b}}}
|
||||||
|
=
|
||||||
|
x^{\textcolor{blue}{a}-\textcolor{red}{b}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.916em;vertical-align:-0.9878em;"></span><span class="mord sizing reset-size6 size8"><span class="mopen nulldelimiter sizing reset-size8 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.339em;"><span style="top:-2.754em;"><span class="pstrut" style="height:3.44em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7712em;"><span style="top:-3.289em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="color:red;">b</span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.67em;"><span class="pstrut" style="height:3.44em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-4.117em;"><span class="pstrut" style="height:3.44em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.662em;"><span style="top:-3.363em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="color:blue;">a</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size8 size6"></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel sizing reset-size6 size8">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.2892em;"></span><span class="mord sizing reset-size6 size8"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8952em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="color:blue;">a</span><span class="mbin mtight">−</span><span class="mord mathnormal mtight" style="color:red;">b</span></span></span></span></span></span></span></span></span></span></span></span></span>
|
||||||
|
<h2 id="machten-en-vermenigvuldigen">Machten en vermenigvuldigen</h2>
|
||||||
|
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle mathsize="1.44em"><msup><mstyle mathcolor="blue"><mi>a</mi></mstyle><mi>x</mi></msup><mo>⋅</mo><mstyle mathcolor="red"><mi>b</mi></mstyle><mo>=</mo><mstyle mathcolor="red"><mi>b</mi></mstyle><mo>⋅</mo><msup><mstyle mathcolor="blue"><mi>a</mi></mstyle><mi>x</mi></msup></mstyle></mrow><annotation encoding="application/x-tex">\Large
|
||||||
|
\textcolor{blue}{a}^x\cdot\textcolor{red}{b}
|
||||||
|
=
|
||||||
|
\textcolor{red}{b}\cdot\textcolor{blue}{a}^x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0253em;"></span><span class="mord sizing reset-size6 size8"><span class="mord mathnormal" style="color:blue;">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.712em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mathnormal mtight">x</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:red;">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel sizing reset-size6 size8">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:red;">b</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0253em;"></span><span class="mord sizing reset-size6 size8"><span class="mord mathnormal" style="color:blue;">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.712em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mathnormal mtight">x</span></span></span></span></span></span></span></span></span></span></span></span>
|
||||||
|
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle mathsize="1.44em"><mstyle mathcolor="blue"><mi>a</mi></mstyle><mo>⋅</mo><msup><mstyle mathcolor="red"><mi>b</mi></mstyle><mi>x</mi></msup><mo>⋅</mo><mstyle mathcolor="green"><mi>c</mi></mstyle><mo>=</mo><mo stretchy="false">(</mo><mstyle mathcolor="blue"><mi>a</mi></mstyle><mo>⋅</mo><mstyle mathcolor="green"><mi>c</mi></mstyle><mo stretchy="false">)</mo><mo>⋅</mo><msup><mstyle mathcolor="red"><mi>b</mi></mstyle><mi>x</mi></msup></mstyle></mrow><annotation encoding="application/x-tex">\Large
|
||||||
|
\textcolor{blue}{a}\cdot\textcolor{red}{b}^x\cdot\textcolor{green}{c}
|
||||||
|
=
|
||||||
|
(\textcolor{blue}{a}\cdot \textcolor{green}{c})\cdot\textcolor{red}{b}^{x}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:blue;">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0253em;"></span><span class="mord sizing reset-size6 size8"><span class="mord mathnormal" style="color:red;">b</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.712em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mathnormal mtight">x</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.62em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:green;">c</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel sizing reset-size6 size8">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.44em;vertical-align:-0.36em;"></span><span class="mopen sizing reset-size6 size8">(</span><span class="mord mathnormal sizing reset-size6 size8" style="color:blue;">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.44em;vertical-align:-0.36em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:green;">c</span><span class="mclose sizing reset-size6 size8">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0253em;"></span><span class="mord sizing reset-size6 size8"><span class="mord mathnormal" style="color:red;">b</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.712em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span></span></span></span></span></span></span></span></span></span></span></span></span>
|
||||||
|
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle mathsize="1.44em"><mstyle mathcolor="blue"><mi>a</mi></mstyle><mo>⋅</mo><msup><mstyle mathcolor="red"><mi>b</mi></mstyle><mi>x</mi></msup><mo>⋅</mo><mstyle mathcolor="red"><mi>b</mi></mstyle><mo>=</mo><mstyle mathcolor="blue"><mi>a</mi></mstyle><mo>⋅</mo><msup><mstyle mathcolor="red"><mi>b</mi></mstyle><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></msup></mstyle></mrow><annotation encoding="application/x-tex">\Large
|
||||||
|
\textcolor{blue}{a}\cdot\textcolor{red}{b}^x\cdot\textcolor{red}{b}
|
||||||
|
=
|
||||||
|
\textcolor{blue}{a}\cdot\textcolor{red}{b}^{x+1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:blue;">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0253em;"></span><span class="mord sizing reset-size6 size8"><span class="mord mathnormal" style="color:red;">b</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.712em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mathnormal mtight">x</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:red;">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel sizing reset-size6 size8">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.64em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:blue;">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.2392em;"></span><span class="mord sizing reset-size6 size8"><span class="mord mathnormal" style="color:red;">b</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8605em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span></span></span></span></span>
|
||||||
|
<h2 id="complexe-regels-voor-machten">Complexe regels voor machten</h2>
|
||||||
|
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle mathsize="1.44em"><mstyle mathcolor="blue"><mi>a</mi></mstyle><msup><mi>x</mi><mstyle mathcolor="green"><mi>n</mi></mstyle></msup><mo>⋅</mo><mstyle mathcolor="red"><mi>b</mi></mstyle><msup><mi>x</mi><mstyle mathcolor="orange"><mi>m</mi></mstyle></msup><mo>=</mo><mo stretchy="false">(</mo><mstyle mathcolor="blue"><mi>a</mi></mstyle><mo>⋅</mo><mstyle mathcolor="red"><mi>b</mi></mstyle><mo stretchy="false">)</mo><msup><mi>x</mi><mrow><mstyle mathcolor="green"><mi>n</mi></mstyle><mo>+</mo><mstyle mathcolor="orange"><mi>m</mi></mstyle></mrow></msup></mstyle></mrow><annotation encoding="application/x-tex">\Large
|
||||||
|
\textcolor{blue}{a}x^{\textcolor{green}{n}}\cdot\textcolor{red}{b}x^{\textcolor{orange}{m}}
|
||||||
|
=
|
||||||
|
(\textcolor{blue}{a}\cdot \textcolor{red}{b})x^{\textcolor{green}{n}+\textcolor{orange}{m}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0253em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:blue;">a</span><span class="mord sizing reset-size6 size8"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.712em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="color:green;">n</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0253em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:red;">b</span><span class="mord sizing reset-size6 size8"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.712em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="color:orange;">m</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel sizing reset-size6 size8">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.44em;vertical-align:-0.36em;"></span><span class="mopen sizing reset-size6 size8">(</span><span class="mord mathnormal sizing reset-size6 size8" style="color:blue;">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.5381em;vertical-align:-0.36em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:red;">b</span><span class="mclose sizing reset-size6 size8">)</span><span class="mord sizing reset-size6 size8"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8181em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="color:green;">n</span><span class="mbin mtight">+</span><span class="mord mathnormal mtight" style="color:orange;">m</span></span></span></span></span></span></span></span></span></span></span></span></span>
|
||||||
|
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle mathsize="1.44em"><mstyle mathcolor="green"><mi>n</mi></mstyle><mo mathvariant="normal">≠</mo><mstyle mathcolor="orange"><mi>m</mi></mstyle><mo>⇒</mo><mstyle mathcolor="blue"><mi>a</mi></mstyle><msup><mi>x</mi><mstyle mathcolor="green"><mi>n</mi></mstyle></msup><mo>+</mo><mstyle mathcolor="red"><mi>b</mi></mstyle><msup><mi>x</mi><mstyle mathcolor="orange"><mi>m</mi></mstyle></msup><mo>=</mo><mstyle mathcolor="blue"><mi>a</mi></mstyle><msup><mi>x</mi><mstyle mathcolor="green"><mi>n</mi></mstyle></msup><mo>+</mo><mstyle mathcolor="red"><mi>b</mi></mstyle><msup><mi>x</mi><mstyle mathcolor="orange"><mi>m</mi></mstyle></msup></mstyle></mrow><annotation encoding="application/x-tex">\Large
|
||||||
|
\textcolor{green}{n} \neq \textcolor{orange}{m} \Rightarrow \textcolor{blue}{a}x^{\textcolor{green}{n}}+\textcolor{red}{b}x^{\textcolor{orange}{m}}
|
||||||
|
=
|
||||||
|
\textcolor{blue}{a}x^{\textcolor{green}{n}}+\textcolor{red}{b}x^{\textcolor{orange}{m}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.28em;vertical-align:-0.28em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:green;">n</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel sizing reset-size6 size8"><span class="mrel"><span class="mord vbox"><span class="thinbox"><span class="rlap"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="inner"><span class="mord"><span class="mrel"></span></span></span><span class="fix"></span></span></span></span></span><span class="mrel">=</span></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.62em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:orange;">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel sizing reset-size6 size8">⇒</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1453em;vertical-align:-0.12em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:blue;">a</span><span class="mord sizing reset-size6 size8"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.712em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="color:green;">n</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0253em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:red;">b</span><span class="mord sizing reset-size6 size8"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.712em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="color:orange;">m</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel sizing reset-size6 size8">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1453em;vertical-align:-0.12em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:blue;">a</span><span class="mord sizing reset-size6 size8"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.712em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="color:green;">n</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0253em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:red;">b</span><span class="mord sizing reset-size6 size8"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.712em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="color:orange;">m</span></span></span></span></span></span></span></span></span></span></span></span></span>
|
||||||
|
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle mathsize="1.44em"><mstyle mathcolor="blue"><mi>a</mi></mstyle><msup><mi>x</mi><mstyle mathcolor="green"><mi>n</mi></mstyle></msup><mo>+</mo><mstyle mathcolor="red"><mi>b</mi></mstyle><msup><mi>x</mi><mstyle mathcolor="green"><mi>n</mi></mstyle></msup><mo>=</mo><mo stretchy="false">(</mo><mstyle mathcolor="blue"><mi>a</mi></mstyle><mo>+</mo><mstyle mathcolor="red"><mi>b</mi></mstyle><mo stretchy="false">)</mo><msup><mi>x</mi><mstyle mathcolor="green"><mi>n</mi></mstyle></msup></mstyle></mrow><annotation encoding="application/x-tex">\Large
|
||||||
|
\textcolor{blue}{a}x^{\textcolor{green}{n}}+\textcolor{red}{b}x^{\textcolor{green}{n}}
|
||||||
|
=
|
||||||
|
(\textcolor{blue}{a}+\textcolor{red}{b})x^{\textcolor{green}{n}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1453em;vertical-align:-0.12em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:blue;">a</span><span class="mord sizing reset-size6 size8"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.712em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="color:green;">n</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0253em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:red;">b</span><span class="mord sizing reset-size6 size8"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.712em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="color:green;">n</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel sizing reset-size6 size8">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.44em;vertical-align:-0.36em;"></span><span class="mopen sizing reset-size6 size8">(</span><span class="mord mathnormal sizing reset-size6 size8" style="color:blue;">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.44em;vertical-align:-0.36em;"></span><span class="mord mathnormal sizing reset-size6 size8" style="color:red;">b</span><span class="mclose sizing reset-size6 size8">)</span><span class="mord sizing reset-size6 size8"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.712em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="color:green;">n</span></span></span></span></span></span></span></span></span></span></span></span></span> <!-- your content is injected here -->
|
||||||
|
</article>
|
||||||
|
</body></html>
|
||||||
147
dist/wortels/index.html
vendored
Normal file
147
dist/wortels/index.html
vendored
Normal file
@ -0,0 +1,147 @@
|
|||||||
|
<!DOCTYPE html>
|
||||||
|
<html lang="en">
|
||||||
|
<head>
|
||||||
|
<meta charset="utf-8">
|
||||||
|
<meta name="viewport" content="width=device-width, initial-scale=1">
|
||||||
|
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.16.21/dist/katex.min.css" integrity="sha384-zh0CIslj+VczCZtlzBcjt5ppRcsAmDnRem7ESsYwWwg3m/OaJ2l4x7YBZl9Kxxib" crossorigin="anonymous">
|
||||||
|
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.21/dist/katex.min.js" integrity="sha384-Rma6DA2IPUwhNxmrB/7S3Tno0YY7sFu9WSYMCuulLhIqYSGZ2gKCJWIqhBWqMQfh" crossorigin="anonymous"></script>
|
||||||
|
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.21/dist/contrib/auto-render.min.js" integrity="sha384-hCXGrW6PitJEwbkoStFjeJxv+fSOOQKOPbJxSfM6G5sWZjAyWhXiTIIAmQqnlLlh" crossorigin="anonymous" onload="renderMathInElement(document.body);"></script>
|
||||||
|
<title>Wortels</title>
|
||||||
|
<style>*{margin:0;padding:0}h1{font-size:24pt;margin-bottom:8pt}h2{font-size:18pt;margin-bottom:8pt}h3{font-size:16pt;margin-bottom:8pt}p{margin-bottom:12pt}body{display:flex;flex-direction:row;font-family:Courier New,Courier,monospace}nav{padding-top:12pt;display:flex;flex-direction:column;background-color:#4682b4;min-width:120pt;height:100vh}nav a{padding:0 4pt 2pt 18pt;display:inline-block;font-size:large;color:#f5f5f5}nav a:hover{background-image:linear-gradient(to bottom,#4682b4,#191970)}article{padding-top:12pt;padding-left:12pt;width:100%}
|
||||||
|
</style></head>
|
||||||
|
<body>
|
||||||
|
<nav>
|
||||||
|
<a href="/">Home</a>
|
||||||
|
<a href="/breuken">Breuken</a>
|
||||||
|
<a href="/wortels">Wortels</a>
|
||||||
|
<a href="/machten">Machten</a>
|
||||||
|
</nav>
|
||||||
|
<article>
|
||||||
|
<h1 id="wortels">Wortels</h1>
|
||||||
|
<h2 id="vermenigvuldiging">Vermenigvuldiging</h2>
|
||||||
|
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle mathsize="1.44em"><msqrt><mrow><mstyle mathcolor="blue"><mi>a</mi></mstyle><mo>⋅</mo><mstyle mathcolor="red"><mi>b</mi></mstyle></mrow></msqrt><mo>=</mo><msqrt><mstyle mathcolor="blue"><mi>a</mi></mstyle></msqrt><mo>⋅</mo><msqrt><mstyle mathcolor="red"><mi>b</mi></mstyle></msqrt></mstyle></mrow><annotation encoding="application/x-tex">\Large
|
||||||
|
\sqrt{\textcolor{blue}{a}\cdot\textcolor{red}{b}}
|
||||||
|
=
|
||||||
|
\sqrt{\textcolor{blue}{a}}\cdot\sqrt{\textcolor{red}{b}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.4976em;vertical-align:-0.0848em;"></span><span class="mord sqrt sizing reset-size6 size8"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9811em;"><span class="svg-align" style="top:-3.44em;"><span class="pstrut" style="height:3.44em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord mathnormal" style="color:blue;">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="color:red;">b</span></span></span><span style="top:-3.3811em;"><span class="pstrut" style="height:3.44em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702
|
||||||
|
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
|
||||||
|
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
|
||||||
|
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
|
||||||
|
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
|
||||||
|
c69,-144,104.5,-217.7,106.5,-221
|
||||||
|
l0 -0
|
||||||
|
c5.3,-9.3,12,-14,20,-14
|
||||||
|
H400000v40H845.2724
|
||||||
|
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
|
||||||
|
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
|
||||||
|
M834 80h400000v40h-400000z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.0589em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel sizing reset-size6 size8">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.4976em;vertical-align:-0.2748em;"></span><span class="mord sqrt sizing reset-size6 size8"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8492em;"><span class="svg-align" style="top:-3.44em;"><span class="pstrut" style="height:3.44em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord mathnormal" style="color:blue;">a</span></span></span><span style="top:-3.2492em;"><span class="pstrut" style="height:3.44em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702
|
||||||
|
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
|
||||||
|
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
|
||||||
|
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
|
||||||
|
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
|
||||||
|
c69,-144,104.5,-217.7,106.5,-221
|
||||||
|
l0 -0
|
||||||
|
c5.3,-9.3,12,-14,20,-14
|
||||||
|
H400000v40H845.2724
|
||||||
|
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
|
||||||
|
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
|
||||||
|
M834 80h400000v40h-400000z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1908em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.4976em;vertical-align:-0.0848em;"></span><span class="mord sqrt sizing reset-size6 size8"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9811em;"><span class="svg-align" style="top:-3.44em;"><span class="pstrut" style="height:3.44em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord mathnormal" style="color:red;">b</span></span></span><span style="top:-3.3811em;"><span class="pstrut" style="height:3.44em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702
|
||||||
|
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
|
||||||
|
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
|
||||||
|
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
|
||||||
|
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
|
||||||
|
c69,-144,104.5,-217.7,106.5,-221
|
||||||
|
l0 -0
|
||||||
|
c5.3,-9.3,12,-14,20,-14
|
||||||
|
H400000v40H845.2724
|
||||||
|
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
|
||||||
|
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
|
||||||
|
M834 80h400000v40h-400000z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.0589em;"><span></span></span></span></span></span></span></span></span></span>
|
||||||
|
<h2 id="vermenigvuldigen-met-breuken">Vermenigvuldigen met breuken</h2>
|
||||||
|
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle mathsize="1.44em"><msqrt><mfrac><mstyle mathcolor="blue"><mi>a</mi></mstyle><mstyle mathcolor="red"><mi>b</mi></mstyle></mfrac></msqrt><mo>=</mo><msqrt><mrow><mstyle mathcolor="blue"><mi>a</mi></mstyle><mo>⋅</mo><mfrac><mn>1</mn><mstyle mathcolor="red"><mi>b</mi></mstyle></mfrac></mrow></msqrt><mo>=</mo><msqrt><mstyle mathcolor="blue"><mi>a</mi></mstyle></msqrt><mo>⋅</mo><msqrt><mfrac><mn>1</mn><mstyle mathcolor="red"><mi>b</mi></mstyle></mfrac></msqrt></mstyle></mrow><annotation encoding="application/x-tex">\Large
|
||||||
|
\sqrt{\frac{\textcolor{blue}{a}}{\textcolor{red}{b}}}
|
||||||
|
=
|
||||||
|
\sqrt{\textcolor{blue}{a}\cdot\frac{1}{\textcolor{red}{b}}}
|
||||||
|
=
|
||||||
|
\sqrt{\textcolor{blue}{a}}\cdot\sqrt{\frac{1}{\textcolor{red}{b}}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.5136em;vertical-align:-1.2893em;"></span><span class="mord sqrt sizing reset-size6 size8"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.5447em;"><span class="svg-align" style="top:-4.4em;"><span class="pstrut" style="height:4.4em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mopen nulldelimiter sizing reset-size8 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1076em;"><span style="top:-2.754em;"><span class="pstrut" style="height:3.44em;"></span><span class="mord"><span class="mord mathnormal" style="color:red;">b</span></span></span><span style="top:-3.67em;"><span class="pstrut" style="height:3.44em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-4.117em;"><span class="pstrut" style="height:3.44em;"></span><span class="mord"><span class="mord mathnormal" style="color:blue;">a</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size8 size6"></span></span></span></span><span style="top:-3.5047em;"><span class="pstrut" style="height:4.4em;"></span><span class="hide-tail" style="min-width:1.02em;height:2.48em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="2.48em" viewBox="0 0 400000 2592" preserveAspectRatio="xMinYMin slice"><path d="M424,2478
|
||||||
|
c-1.3,-0.7,-38.5,-172,-111.5,-514c-73,-342,-109.8,-513.3,-110.5,-514
|
||||||
|
c0,-2,-10.7,14.3,-32,49c-4.7,7.3,-9.8,15.7,-15.5,25c-5.7,9.3,-9.8,16,-12.5,20
|
||||||
|
s-5,7,-5,7c-4,-3.3,-8.3,-7.7,-13,-13s-13,-13,-13,-13s76,-122,76,-122s77,-121,77,-121
|
||||||
|
s209,968,209,968c0,-2,84.7,-361.7,254,-1079c169.3,-717.3,254.7,-1077.7,256,-1081
|
||||||
|
l0 -0c4,-6.7,10,-10,18,-10 H400000
|
||||||
|
v40H1014.6
|
||||||
|
s-87.3,378.7,-272.6,1166c-185.3,787.3,-279.3,1182.3,-282,1185
|
||||||
|
c-2,6,-10,9,-24,9
|
||||||
|
c-8,0,-12,-0.7,-12,-2z M1001 80
|
||||||
|
h400000v40h-400000z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8953em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel sizing reset-size6 size8">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:3.5136em;vertical-align:-1.1353em;"></span><span class="mord sqrt sizing reset-size6 size8"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6516em;"><span class="svg-align" style="top:-4.4em;"><span class="pstrut" style="height:4.4em;"></span><span class="mord" style="padding-left:1em;"><span class="mord mathnormal" style="color:blue;">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mopen nulldelimiter sizing reset-size8 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.754em;"><span class="pstrut" style="height:3.44em;"></span><span class="mord"><span class="mord mathnormal" style="color:red;">b</span></span></span><span style="top:-3.67em;"><span class="pstrut" style="height:3.44em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-4.117em;"><span class="pstrut" style="height:3.44em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size8 size6"></span></span></span></span><span style="top:-3.6116em;"><span class="pstrut" style="height:4.4em;"></span><span class="hide-tail" style="min-width:1.02em;height:2.48em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="2.48em" viewBox="0 0 400000 2592" preserveAspectRatio="xMinYMin slice"><path d="M424,2478
|
||||||
|
c-1.3,-0.7,-38.5,-172,-111.5,-514c-73,-342,-109.8,-513.3,-110.5,-514
|
||||||
|
c0,-2,-10.7,14.3,-32,49c-4.7,7.3,-9.8,15.7,-15.5,25c-5.7,9.3,-9.8,16,-12.5,20
|
||||||
|
s-5,7,-5,7c-4,-3.3,-8.3,-7.7,-13,-13s-13,-13,-13,-13s76,-122,76,-122s77,-121,77,-121
|
||||||
|
s209,968,209,968c0,-2,84.7,-361.7,254,-1079c169.3,-717.3,254.7,-1077.7,256,-1081
|
||||||
|
l0 -0c4,-6.7,10,-10,18,-10 H400000
|
||||||
|
v40H1014.6
|
||||||
|
s-87.3,378.7,-272.6,1166c-185.3,787.3,-279.3,1182.3,-282,1185
|
||||||
|
c-2,6,-10,9,-24,9
|
||||||
|
c-8,0,-12,-0.7,-12,-2z M1001 80
|
||||||
|
h400000v40h-400000z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7884em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel sizing reset-size6 size8">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.4976em;vertical-align:-0.2748em;"></span><span class="mord sqrt sizing reset-size6 size8"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8492em;"><span class="svg-align" style="top:-3.44em;"><span class="pstrut" style="height:3.44em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord mathnormal" style="color:blue;">a</span></span></span><span style="top:-3.2492em;"><span class="pstrut" style="height:3.44em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702
|
||||||
|
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
|
||||||
|
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
|
||||||
|
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
|
||||||
|
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
|
||||||
|
c69,-144,104.5,-217.7,106.5,-221
|
||||||
|
l0 -0
|
||||||
|
c5.3,-9.3,12,-14,20,-14
|
||||||
|
H400000v40H845.2724
|
||||||
|
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
|
||||||
|
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
|
||||||
|
M834 80h400000v40h-400000z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1908em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin sizing reset-size6 size8">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:3.5136em;vertical-align:-1.1353em;"></span><span class="mord sqrt sizing reset-size6 size8"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6516em;"><span class="svg-align" style="top:-4.4em;"><span class="pstrut" style="height:4.4em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mopen nulldelimiter sizing reset-size8 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3214em;"><span style="top:-2.754em;"><span class="pstrut" style="height:3.44em;"></span><span class="mord"><span class="mord mathnormal" style="color:red;">b</span></span></span><span style="top:-3.67em;"><span class="pstrut" style="height:3.44em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-4.117em;"><span class="pstrut" style="height:3.44em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size8 size6"></span></span></span></span><span style="top:-3.6116em;"><span class="pstrut" style="height:4.4em;"></span><span class="hide-tail" style="min-width:1.02em;height:2.48em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="2.48em" viewBox="0 0 400000 2592" preserveAspectRatio="xMinYMin slice"><path d="M424,2478
|
||||||
|
c-1.3,-0.7,-38.5,-172,-111.5,-514c-73,-342,-109.8,-513.3,-110.5,-514
|
||||||
|
c0,-2,-10.7,14.3,-32,49c-4.7,7.3,-9.8,15.7,-15.5,25c-5.7,9.3,-9.8,16,-12.5,20
|
||||||
|
s-5,7,-5,7c-4,-3.3,-8.3,-7.7,-13,-13s-13,-13,-13,-13s76,-122,76,-122s77,-121,77,-121
|
||||||
|
s209,968,209,968c0,-2,84.7,-361.7,254,-1079c169.3,-717.3,254.7,-1077.7,256,-1081
|
||||||
|
l0 -0c4,-6.7,10,-10,18,-10 H400000
|
||||||
|
v40H1014.6
|
||||||
|
s-87.3,378.7,-272.6,1166c-185.3,787.3,-279.3,1182.3,-282,1185
|
||||||
|
c-2,6,-10,9,-24,9
|
||||||
|
c-8,0,-12,-0.7,-12,-2z M1001 80
|
||||||
|
h400000v40h-400000z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7884em;"><span></span></span></span></span></span></span></span></span></span>
|
||||||
|
<h2 id="herschrijven-als-macht">Herschrijven als Macht</h2>
|
||||||
|
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle mathsize="1.44em"><msqrt><mo stretchy="false">(</mo></msqrt><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>x</mi><mrow><mn>1</mn><mi mathvariant="normal">/</mi><mn>2</mn></mrow></msup></mstyle></mrow><annotation encoding="application/x-tex">\Large
|
||||||
|
\sqrt(x) = x^{1/2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.7856em;vertical-align:-0.3688em;"></span><span class="mord sqrt sizing reset-size6 size8"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9839em;"><span class="svg-align" style="top:-3.44em;"><span class="pstrut" style="height:3.44em;"></span><span class="mopen" style="padding-left:1em;">(</span></span><span style="top:-3.1839em;"><span class="pstrut" style="height:3.44em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.28em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.28em" viewBox="0 0 400000 1296" preserveAspectRatio="xMinYMin slice"><path d="M263,681c0.7,0,18,39.7,52,119
|
||||||
|
c34,79.3,68.167,158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120
|
||||||
|
c340,-704.7,510.7,-1060.3,512,-1067
|
||||||
|
l0 -0
|
||||||
|
c4.7,-7.3,11,-11,19,-11
|
||||||
|
H40000v40H1012.3
|
||||||
|
s-271.3,567,-271.3,567c-38.7,80.7,-84,175,-136,283c-52,108,-89.167,185.3,-111.5,232
|
||||||
|
c-22.3,46.7,-33.8,70.3,-34.5,71c-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1
|
||||||
|
s-109,-253,-109,-253c-72.7,-168,-109.3,-252,-110,-252c-10.7,8,-22,16.7,-34,26
|
||||||
|
c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26s76,-59,76,-59s76,-60,76,-60z
|
||||||
|
M1001 80h400000v40h-400000z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2561em;"><span></span></span></span></span></span><span class="mord mathnormal sizing reset-size6 size8">x</span><span class="mclose sizing reset-size6 size8">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel sizing reset-size6 size8">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.3447em;"></span><span class="mord sizing reset-size6 size8"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9338em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight"><span class="mord mtight">1/2</span></span></span></span></span></span></span></span></span></span></span></span></span>
|
||||||
|
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle mathsize="1.44em"><mroot><mo stretchy="false" lspace="0em" rspace="0em">(</mo><mn>3</mn></mroot><msup><mi>x</mi><mn>2</mn></msup><mo stretchy="false">)</mo><mo>=</mo><msup><mi>x</mi><mrow><mn>2</mn><mi mathvariant="normal">/</mi><mn>3</mn></mrow></msup></mstyle></mrow><annotation encoding="application/x-tex">\Large
|
||||||
|
\sqrt[3](x^2)=x^{2/3}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.7856em;vertical-align:-0.3688em;"></span><span class="mord sqrt sizing reset-size6 size8"><span class="root"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7499em;"><span style="top:-3.1367em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size8 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9839em;"><span class="svg-align" style="top:-3.44em;"><span class="pstrut" style="height:3.44em;"></span><span class="mord" style="padding-left:1em;"><span class="mopen">(</span></span></span><span style="top:-3.1839em;"><span class="pstrut" style="height:3.44em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.28em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.28em" viewBox="0 0 400000 1296" preserveAspectRatio="xMinYMin slice"><path d="M263,681c0.7,0,18,39.7,52,119
|
||||||
|
c34,79.3,68.167,158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120
|
||||||
|
c340,-704.7,510.7,-1060.3,512,-1067
|
||||||
|
l0 -0
|
||||||
|
c4.7,-7.3,11,-11,19,-11
|
||||||
|
H40000v40H1012.3
|
||||||
|
s-271.3,567,-271.3,567c-38.7,80.7,-84,175,-136,283c-52,108,-89.167,185.3,-111.5,232
|
||||||
|
c-22.3,46.7,-33.8,70.3,-34.5,71c-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1
|
||||||
|
s-109,-253,-109,-253c-72.7,-168,-109.3,-252,-110,-252c-10.7,8,-22,16.7,-34,26
|
||||||
|
c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26s76,-59,76,-59s76,-60,76,-60z
|
||||||
|
M1001 80h400000v40h-400000z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2561em;"><span></span></span></span></span></span><span class="mord sizing reset-size6 size8"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8605em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mclose sizing reset-size6 size8">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel sizing reset-size6 size8">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.3447em;"></span><span class="mord sizing reset-size6 size8"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9338em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight"><span class="mord mtight">2/3</span></span></span></span></span></span></span></span></span></span></span></span></span>
|
||||||
|
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mstyle mathsize="1.44em"><mroot><mo stretchy="false" lspace="0em" rspace="0em">(</mo><mstyle mathcolor="blue"><mi>n</mi></mstyle></mroot><msup><mi>x</mi><mstyle mathcolor="red"><mi>m</mi></mstyle></msup><mo stretchy="false">)</mo><mo>=</mo><msup><mi>x</mi><mrow><mstyle mathcolor="red"><mi>m</mi></mstyle><mi mathvariant="normal">/</mi><mstyle mathcolor="blue"><mi>n</mi></mstyle></mrow></msup></mstyle></mrow><annotation encoding="application/x-tex">\Large
|
||||||
|
\sqrt[\textcolor{blue}{n}](x^{\textcolor{red}{m}})
|
||||||
|
=
|
||||||
|
x^{\textcolor{red}{m}/\textcolor{blue}{n}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.7856em;vertical-align:-0.3688em;"></span><span class="mord sqrt sizing reset-size6 size8"><span class="root"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.646em;"><span style="top:-3.1367em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size8 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="color:blue;">n</span></span></span></span></span></span></span></span><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9839em;"><span class="svg-align" style="top:-3.44em;"><span class="pstrut" style="height:3.44em;"></span><span class="mord" style="padding-left:1em;"><span class="mopen">(</span></span></span><span style="top:-3.1839em;"><span class="pstrut" style="height:3.44em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.28em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.28em" viewBox="0 0 400000 1296" preserveAspectRatio="xMinYMin slice"><path d="M263,681c0.7,0,18,39.7,52,119
|
||||||
|
c34,79.3,68.167,158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120
|
||||||
|
c340,-704.7,510.7,-1060.3,512,-1067
|
||||||
|
l0 -0
|
||||||
|
c4.7,-7.3,11,-11,19,-11
|
||||||
|
H40000v40H1012.3
|
||||||
|
s-271.3,567,-271.3,567c-38.7,80.7,-84,175,-136,283c-52,108,-89.167,185.3,-111.5,232
|
||||||
|
c-22.3,46.7,-33.8,70.3,-34.5,71c-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1
|
||||||
|
s-109,-253,-109,-253c-72.7,-168,-109.3,-252,-110,-252c-10.7,8,-22,16.7,-34,26
|
||||||
|
c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26s76,-59,76,-59s76,-60,76,-60z
|
||||||
|
M1001 80h400000v40h-400000z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2561em;"><span></span></span></span></span></span><span class="mord sizing reset-size6 size8"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.712em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="color:red;">m</span></span></span></span></span></span></span></span></span><span class="mclose sizing reset-size6 size8">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel sizing reset-size6 size8">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.3447em;"></span><span class="mord sizing reset-size6 size8"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9338em;"><span style="top:-3.413em;margin-right:0.0347em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size8 size6 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="color:red;">m</span><span class="mord mtight">/</span><span class="mord mathnormal mtight" style="color:blue;">n</span></span></span></span></span></span></span></span></span></span></span></span></span> <!-- your content is injected here -->
|
||||||
|
</article>
|
||||||
|
</body></html>
|
||||||
@ -16,6 +16,9 @@
|
|||||||
"author": "",
|
"author": "",
|
||||||
"license": "ISC",
|
"license": "ISC",
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"astro": "^5.5.6"
|
"astro": "^5.5.6",
|
||||||
|
"katex": "^0.16.21",
|
||||||
|
"rehype-katex": "^7.0.1",
|
||||||
|
"remark-math": "^6.0.0"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@ -1,7 +1,23 @@
|
|||||||
* {
|
* {
|
||||||
margin: 0;
|
margin: 0;
|
||||||
padding: 0;
|
padding: 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
h1 {
|
||||||
|
font-size: 24pt;
|
||||||
|
margin-bottom: 8pt;
|
||||||
|
}
|
||||||
|
h2 {
|
||||||
|
font-size: 18pt;
|
||||||
|
margin-bottom: 8pt;
|
||||||
|
}
|
||||||
|
h3 {
|
||||||
|
font-size: 16pt;
|
||||||
|
margin-bottom: 8pt;
|
||||||
|
}
|
||||||
|
|
||||||
|
p {
|
||||||
|
margin-bottom: 12pt;
|
||||||
}
|
}
|
||||||
|
|
||||||
body {
|
body {
|
||||||
@ -19,7 +35,7 @@ nav {
|
|||||||
height: 100vh;
|
height: 100vh;
|
||||||
}
|
}
|
||||||
nav a {
|
nav a {
|
||||||
padding: 0pt 4pt 2pt 4pt;
|
padding: 0pt 4pt 2pt 18pt;
|
||||||
display: inline-block;
|
display: inline-block;
|
||||||
font-size: large;
|
font-size: large;
|
||||||
color: whitesmoke;
|
color: whitesmoke;
|
||||||
@ -32,4 +48,5 @@ nav a:hover {
|
|||||||
article {
|
article {
|
||||||
padding-top: 12pt;
|
padding-top: 12pt;
|
||||||
padding-left: 12pt;
|
padding-left: 12pt;
|
||||||
|
width: 100%;
|
||||||
}
|
}
|
||||||
@ -2,17 +2,23 @@
|
|||||||
import '../css/math.css';
|
import '../css/math.css';
|
||||||
const { frontmatter } = Astro.props;
|
const { frontmatter } = Astro.props;
|
||||||
---
|
---
|
||||||
|
<!DOCTYPE html>
|
||||||
<html lang="en">
|
<html lang="en">
|
||||||
<head>
|
<head>
|
||||||
<meta charset="utf-8">
|
<meta charset="utf-8">
|
||||||
<meta name="viewport" content="width=device-width, initial-scale=1">
|
<meta name="viewport" content="width=device-width, initial-scale=1">
|
||||||
|
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.16.21/dist/katex.min.css" integrity="sha384-zh0CIslj+VczCZtlzBcjt5ppRcsAmDnRem7ESsYwWwg3m/OaJ2l4x7YBZl9Kxxib" crossorigin="anonymous">
|
||||||
|
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.21/dist/katex.min.js" integrity="sha384-Rma6DA2IPUwhNxmrB/7S3Tno0YY7sFu9WSYMCuulLhIqYSGZ2gKCJWIqhBWqMQfh" crossorigin="anonymous"></script>
|
||||||
|
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.21/dist/contrib/auto-render.min.js" integrity="sha384-hCXGrW6PitJEwbkoStFjeJxv+fSOOQKOPbJxSfM6G5sWZjAyWhXiTIIAmQqnlLlh" crossorigin="anonymous"
|
||||||
|
onload="renderMathInElement(document.body);"></script>
|
||||||
<title>{frontmatter.title}</title>
|
<title>{frontmatter.title}</title>
|
||||||
</head>
|
</head>
|
||||||
<body>
|
<body>
|
||||||
<nav>
|
<nav>
|
||||||
<a href="/">Home</a>
|
<a href="/">Home</a>
|
||||||
<a href="#">Breuken</a>
|
<a href="/breuken">Breuken</a>
|
||||||
<a href="#">Machten</a>
|
<a href="/wortels">Wortels</a>
|
||||||
|
<a href="/machten">Machten</a>
|
||||||
</nav>
|
</nav>
|
||||||
<article>
|
<article>
|
||||||
<slot /> <!-- your content is injected here -->
|
<slot /> <!-- your content is injected here -->
|
||||||
|
|||||||
41
src/pages/breuken.md
Normal file
41
src/pages/breuken.md
Normal file
@ -0,0 +1,41 @@
|
|||||||
|
---
|
||||||
|
layout: "../layout/math.astro"
|
||||||
|
title: "Breuken"
|
||||||
|
---
|
||||||
|
# Breuken
|
||||||
|
## Vermenigvuldigen
|
||||||
|
$$
|
||||||
|
\Large
|
||||||
|
\frac{\textcolor{blue}{a}}{\textcolor{red}{b}}
|
||||||
|
\cdot
|
||||||
|
\frac{\textcolor{green}{c}}{\textcolor{orange}{d}}
|
||||||
|
=
|
||||||
|
\frac{\textcolor{blue}{a}\cdot \textcolor{green}{c}}{\textcolor{red}{b}\cdot \textcolor{orange}{d}}
|
||||||
|
$$
|
||||||
|
## Optellen
|
||||||
|
$$
|
||||||
|
\Large
|
||||||
|
\frac{\textcolor{blue}{a}}{\textcolor{red}{b}}+\frac{\textcolor{green}{c}}{\textcolor{orange}{d}}
|
||||||
|
=
|
||||||
|
\frac{(\textcolor{blue}{a}\cdot \textcolor{orange}{d})+(\textcolor{green}{c}\cdot \textcolor{red}{b})}{\textcolor{red}{b}\cdot \textcolor{orange}{d}}
|
||||||
|
$$
|
||||||
|
$$
|
||||||
|
\Large
|
||||||
|
x\frac{\textcolor{blue}{a}}{\textcolor{red}{b}}+y\frac{\textcolor{green}{c}}{\textcolor{orange}{d}}
|
||||||
|
=
|
||||||
|
x+y+\frac{\textcolor{blue}{a}}{\textcolor{red}{b}}+\frac{\textcolor{green}{c}}{\textcolor{orange}{d}}
|
||||||
|
$$
|
||||||
|
## Delen
|
||||||
|
$$
|
||||||
|
\Large
|
||||||
|
\frac{\textcolor{blue}{a}}{(\frac{\textcolor{red}{b}}{\textcolor{green}{c}})}
|
||||||
|
=
|
||||||
|
\textcolor{blue}{a}\cdot\frac{\textcolor{green}{c}}{\textcolor{red}{b}}
|
||||||
|
$$
|
||||||
|
|
||||||
|
$$
|
||||||
|
\Large
|
||||||
|
\frac{(\frac{\textcolor{blue}{a}}{\textcolor{red}{b}})}{\textcolor{green}{c}}
|
||||||
|
=
|
||||||
|
\frac{\textcolor{blue}{a}}{\textcolor{red}{b}\cdot \textcolor{green}{c}}
|
||||||
|
$$
|
||||||
@ -2,4 +2,22 @@
|
|||||||
layout: "../layout/math.astro"
|
layout: "../layout/math.astro"
|
||||||
title: "Home"
|
title: "Home"
|
||||||
---
|
---
|
||||||
# Wiskunde
|
# Wiskunde
|
||||||
|
Links vind je uitleg van basisconcepten die je nodig hebt binnen de wiskunde. Gebruik dit tijdens het leren om je basisvaardigheden na te lopen.
|
||||||
|
|
||||||
|
Hieronder vind je nog een aantal korte opmeringen die niet onder de onderwerpen in het linker-menu vallen.
|
||||||
|
|
||||||
|
## Haakjes
|
||||||
|
Haakjes gaan altijd voor met uitwerken, maar soms moet je de inhoud loswerken:
|
||||||
|
$$
|
||||||
|
\Large
|
||||||
|
\textcolor{blue}{a}(\textcolor{red}{b}+\textcolor{green}{c})
|
||||||
|
= \textcolor{blue}{a}\cdot\textcolor{red}{b}+\textcolor{blue}{a}\cdot\textcolor{green}{c}
|
||||||
|
$$
|
||||||
|
|
||||||
|
$$
|
||||||
|
\Large
|
||||||
|
(\textcolor{blue}{a}+\textcolor{orange}{d})(\textcolor{red}{b}+\textcolor{green}{c})
|
||||||
|
=
|
||||||
|
\textcolor{blue}{a}\cdot\textcolor{red}{b}+\textcolor{blue}{a}\cdot\textcolor{green}{c}+\textcolor{orange}{d}\cdot\textcolor{red}{b}+\textcolor{orange}{d}\cdot\textcolor{green}{c}
|
||||||
|
$$
|
||||||
69
src/pages/machten.md
Normal file
69
src/pages/machten.md
Normal file
@ -0,0 +1,69 @@
|
|||||||
|
---
|
||||||
|
layout: "../layout/math.astro"
|
||||||
|
title: "Machten"
|
||||||
|
---
|
||||||
|
# Machten
|
||||||
|
## Basisregels
|
||||||
|
$$
|
||||||
|
\Large
|
||||||
|
(x^{\textcolor{blue}{a}})^{\textcolor{red}{b}}
|
||||||
|
=
|
||||||
|
x^{\textcolor{blue}{a}\cdot\textcolor{red}{b}}
|
||||||
|
$$
|
||||||
|
|
||||||
|
$$
|
||||||
|
\Large
|
||||||
|
x^{\textcolor{blue}{a}}\cdot x^{\textcolor{red}{b}}
|
||||||
|
=
|
||||||
|
x^{\textcolor{blue}{a}+\textcolor{red}{b}}
|
||||||
|
$$
|
||||||
|
|
||||||
|
$$
|
||||||
|
\Large
|
||||||
|
\frac{x^{\textcolor{blue}{a}}}{x^{\textcolor{red}{b}}}
|
||||||
|
=
|
||||||
|
x^{\textcolor{blue}{a}-\textcolor{red}{b}}
|
||||||
|
$$
|
||||||
|
## Machten en vermenigvuldigen
|
||||||
|
|
||||||
|
$$
|
||||||
|
\Large
|
||||||
|
\textcolor{blue}{a}^x\cdot\textcolor{red}{b}
|
||||||
|
=
|
||||||
|
\textcolor{red}{b}\cdot\textcolor{blue}{a}^x
|
||||||
|
$$
|
||||||
|
$$
|
||||||
|
\Large
|
||||||
|
\textcolor{blue}{a}\cdot\textcolor{red}{b}^x\cdot\textcolor{green}{c}
|
||||||
|
=
|
||||||
|
(\textcolor{blue}{a}\cdot \textcolor{green}{c})\cdot\textcolor{red}{b}^{x}
|
||||||
|
$$
|
||||||
|
|
||||||
|
$$
|
||||||
|
\Large
|
||||||
|
\textcolor{blue}{a}\cdot\textcolor{red}{b}^x\cdot\textcolor{red}{b}
|
||||||
|
=
|
||||||
|
\textcolor{blue}{a}\cdot\textcolor{red}{b}^{x+1}
|
||||||
|
$$
|
||||||
|
|
||||||
|
## Complexe regels voor machten
|
||||||
|
$$
|
||||||
|
\Large
|
||||||
|
\textcolor{blue}{a}x^{\textcolor{green}{n}}\cdot\textcolor{red}{b}x^{\textcolor{orange}{m}}
|
||||||
|
=
|
||||||
|
(\textcolor{blue}{a}\cdot \textcolor{red}{b})x^{\textcolor{green}{n}+\textcolor{orange}{m}}
|
||||||
|
$$
|
||||||
|
|
||||||
|
$$
|
||||||
|
\Large
|
||||||
|
\textcolor{green}{n} \neq \textcolor{orange}{m} \Rightarrow \textcolor{blue}{a}x^{\textcolor{green}{n}}+\textcolor{red}{b}x^{\textcolor{orange}{m}}
|
||||||
|
=
|
||||||
|
\textcolor{blue}{a}x^{\textcolor{green}{n}}+\textcolor{red}{b}x^{\textcolor{orange}{m}}
|
||||||
|
$$
|
||||||
|
|
||||||
|
$$
|
||||||
|
\Large
|
||||||
|
\textcolor{blue}{a}x^{\textcolor{green}{n}}+\textcolor{red}{b}x^{\textcolor{green}{n}}
|
||||||
|
=
|
||||||
|
(\textcolor{blue}{a}+\textcolor{red}{b})x^{\textcolor{green}{n}}
|
||||||
|
$$
|
||||||
41
src/pages/wortels.md
Normal file
41
src/pages/wortels.md
Normal file
@ -0,0 +1,41 @@
|
|||||||
|
---
|
||||||
|
layout: "../layout/math.astro"
|
||||||
|
title: "Wortels"
|
||||||
|
---
|
||||||
|
# Wortels
|
||||||
|
|
||||||
|
## Vermenigvuldiging
|
||||||
|
$$
|
||||||
|
\Large
|
||||||
|
\sqrt{\textcolor{blue}{a}\cdot\textcolor{red}{b}}
|
||||||
|
=
|
||||||
|
\sqrt{\textcolor{blue}{a}}\cdot\sqrt{\textcolor{red}{b}}
|
||||||
|
$$
|
||||||
|
|
||||||
|
## Vermenigvuldigen met breuken
|
||||||
|
$$
|
||||||
|
\Large
|
||||||
|
\sqrt{\frac{\textcolor{blue}{a}}{\textcolor{red}{b}}}
|
||||||
|
=
|
||||||
|
\sqrt{\textcolor{blue}{a}\cdot\frac{1}{\textcolor{red}{b}}}
|
||||||
|
=
|
||||||
|
\sqrt{\textcolor{blue}{a}}\cdot\sqrt{\frac{1}{\textcolor{red}{b}}}
|
||||||
|
$$
|
||||||
|
|
||||||
|
## Herschrijven als Macht
|
||||||
|
$$
|
||||||
|
\Large
|
||||||
|
\sqrt(x) = x^{1/2}
|
||||||
|
$$
|
||||||
|
|
||||||
|
$$
|
||||||
|
\Large
|
||||||
|
\sqrt[3](x^2)=x^{2/3}
|
||||||
|
$$
|
||||||
|
|
||||||
|
$$
|
||||||
|
\Large
|
||||||
|
\sqrt[\textcolor{blue}{n}](x^{\textcolor{red}{m}})
|
||||||
|
=
|
||||||
|
x^{\textcolor{red}{m}/\textcolor{blue}{n}}
|
||||||
|
$$
|
||||||
Loading…
x
Reference in New Issue
Block a user